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Abstract: The UK Met Office GCM applied to HD 209458b Abstract: Treatment of overlapping gaseous absorption with

To study the complexity of hot Jupiter atmospheres revealed by observations of increasing quality, we have adapted the CorrEIatEd'k mEthOd N atmosphere mOdEIS
the UK Met Office Global Circulation Model (GCM), the Unified Model (UM), to these exoplanets. The UM solves the

full 3D Euler equations with a height-varying gravity, avoiding the simplifications used in most GCMs currently applied
to exoplanets. We present the coupling of the UM dynamical core to an accurate radiation scheme based on the two-
stream approximation and correlated-k method with state-of-the-art opacities from ExoMol. Our first application of
this model is devoted to the extensively studied hot Jupiter HD 209458b. We derive synthetic emission spectra and
phase curves, and compare them to both previous models also based on state-of-the-art radiative transfer, and to
observations. We find a reasonable agreement between our day side emission, hotspot offset and observations, while
our night side emission is too large. Overall our results are qualitatively similar to those found by Showman et al.,
AplJ, 2009 with the SPARC/MITgcm, however, our simulations show significant variation in the position of the hottest
part of the atmosphere with pressure, as expected from simple timescale arguments, in contrast to previous works
demonstrating “vertical coherency” (Showman et al., ApJ, 2009). Our comparisons strengthen the need for detailed
intercomparisons of dynamical cores, radiation schemes and post-processing tools to understand these differences.
This effort is necessary in order to make robust conclusions about these atmospheres based on GCM results.

The correlated-k method is frequently used to speed up radiation calculations in both one-dimensional and three-
dimensional atmosphere models. An inherent difficulty with this method is how to treat overlapping absorption, i.e.
absorption by more than one gas in a given spectral region. We have evaluated the applicability of three different
methods in hot Jupiter and brown dwarf atmosphere models, all of which have been previously applied within models in
the literature: (i) Random overlap, both with and without resorting and rebinning (Lacis & Oinas, JGR, 1991), (ii)
equivalent extinction (Edwards, JAS, 1996) and (iii) pre-mixing of opacities, where (i) and (ii) combine k-coefficients for
different gases to obtain k-coefficients for a mixture of gases, while (iii) calculates k-coefficients for a given mixture from
o8 the corresponding mixed line-by-line opacities. We find that the random overlap method is the most accurate and
flexible of these treatments, and is fast enough to be used in one-dimensional models with resorting and rebinning. In
three-dimensional models such as GCMs it is too slow, however, and equivalent extinction can provide a speed-up of at
least a factor of three with only a minor loss of accuracy while at the same time retaining the flexibility gained by
combining k-coefficients computed for each gas individually. Pre-mixed opacities are significantly less flexible, and we
also find that particular care must be taken when using this method in order to properly resolve rapid changes in the
total opacity caused by changing mixing ratios. Our k-tables have sufficient resolution to resolve opacity changes of
individual gases, but not to resolve rapid changes in gas mixing ratios caused by e.g. condensation. We use the random
overlap method with resorting and rebinning in our one-dimensional atmosphere model and equivalent extinction in our
GCM, which allows us to e.g. consistently treat the feedback of non-equilibrium mixing ratios on the opacity and
therefore the calculated P-T profiles in our models.
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Treatments of overlapping gaseous absorption

i. Random overlap (Lacis & Oinas, JGR, 1991): k-coefficients are computed for each gas and combined assuming
their absorption cross-sections are uncorrelated:
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Verification of the random overlap assumption
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Dayside emission spectrum (left) and 4.5 um phase curve (right) calculated from our 3D GCM results using our 1D linearly in temperature. This is similar to the resolution (A)EE 1.0 1.5
atmosphere code ATMO. We are able to match the dayside emission quite well, including the offset of the peak flux, used in previous works (e.g. Showman et al., A&A, 2009). & bise il
while our night side emission is too large. This is also the case for Showman et al.’s models from Zellem et al. (2014), Results for a day side P-T profile are similar.
particularly for the model with a setup close to ours (no TiO/VO).
Conclusions Conclusions
« We obtain a good qualitative agreement with * Further intercomparison is needed. ) The. rgndpm overlap methoql without resorting and b Eguivalent extinction is fastgr thap RORR, although
Showman et al. (2009): both global circulation « We obtain a reasonable fit to the dayside emission. rebining is accurate and flexible, t_)Ut slow. | §I|ghtly less accurate, but still flexible. Can be used
patterns and synthetic observations are similar. * Like other models we overestimate the night side flux. ) The_ ra.ndor.n overlap method W_'th resortlr?g and . GCMS' . _
« We do not see a “vertical coherency”. rebinning is accur.ate and flexible, and is fast * Pre-mixed opacities are not flexible and can lead
enough to be used in 1D models. to significant errors if mixing ratios change rapidly.
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